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Abstract

PIC microcontrollers (as used for the sensors in the Cyberjacket project in the ongoing

wearables research at Bristol University) are currently programmed mainly in PIC

assembler. This project provides a higher-level C API to provide a way to program

the PIC’s without having to use assembler - which reduces the time taken to write new

code, as well as improving maintainability of existing code. The API also adds a series

of additional features not present in PIC assembler, including compile-time setting of

minimum execution times for sections of code, loop structures and decision structures.

The API gives the end-user programmer a way to build a code tree from simple

segments, and then to generate code for that tree. Because of the use of an API within

an existing language, we can use that language’s exisiting features to generate a wide

variety of different pieces of PIC code from a single program, without the overheads

of recompiling the program. This allows for greater specialisation in the PIC code,

reducing the problems with the limited space of the PICs.

This project is designed for the ARM-based Bitsy computer, but would work

equally well on other systems with minimal resources.
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Chapter 1

Prologue

One of the major projects of the ongoing wearables research at Bristol University has

been the "cyberjacket" project. We have been working on a new way to program the

PIC microcontrollers used for the sensors in the "cyberjacket" project. The PICs are

very simple microcontrollers, with limited functionality, and this project is designed

to provide additional capabilities for the people programming the PICs, by exploiting

what can be done by combining different parts of the existing capabilities, and provid-

ing a higher-level view of the program, with less knowledge about the underlying

assembler code.

1.1 Aims

The main aims of this project are

• To provide a way for the sensors to be programmed with a variety of new pro-

grams by the Bitsy (the wearable computer that is the hub of the cyberjacket),

allowing the new code for the sensors to be determined at run-time by the Bitsy,

thus allowing flexibility without significantly increasing the time needed for the

Bitsy to supply the code, as opposed to using pre-generated code.

• To provide a way to do this without having to directly use PIC assembler, which

is the current standard method for programming the sensors.

• Additional features must have been added to what is possible to simply do with

PIC programming, over what can be done with just PIC assembler. These will

be features that were possible with PIC assembler before, but they will now be

actual features in the system used for programming, thus allowing for greater

and simpler use of these features. Examples of some features that will be added

include timing specifications (i.e. specification of how long a section of code

will take to run), while loops and if/then/else blocks.
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• Time to alter/debug a program for the PIC must be significantly reduced i.e.

for a given set of example projects, it must be shown that it will be faster to

add additional features with the new system, than it would be to write the PIC

assembler. It must also be possible to make many changes in succession without

any additional complications.

1.2 Overview

• Chapter 2 talks about the background to the project - explaining more about the

cyberjackets, PIC assembler, and existing attempts to make PIC programming

easier.

• Chapter 3 looks at how we can implement the aims of this project, looking at

a variety of design choices and seeing why we make the choices in our designs

that we do

• Chapter 4 has a guide to the end project API, with more details about the under-

lying implementation, and how a number of tricky problems were solved

• Chapter 5 looks at an old implementation of some sensor code, and re-implement

the same functionality using the new API

• Chapter 6 is the conclusion of this project, summarizing what we have achieved,

and detailing future areas of research.

• There then follows the appendices

– Appendix A is the full code for a sensor

– Appendix B is the re-written code for the same sensor



Chapter 2

Background

2.1 Cyberjackets

The cyberjackets are part of the wear-

Figure 2.1: Abstract representation of a cy-

berjacket. This shows the data bus (thick

line) as part of the main body of a person

wearing the jacket (shown here as the thin-

ner outline)

able computing projects at Bristol Uni-

versity, designed as a part of the focus

of the project exploring the potential of

computer devices that are as unconsciously

portable and as personal as clothes or

jewellery.

The jackets themselves consist of a

heavy-duty jacket with a Bitsy (a small

ARM-based portable computer with a wire-

less networking interface attached) in one

of the pockets, a series of sensors (ex-

amples include GPS, accelerometers, com-

passes and ultrasonic sensing devices) at-

tached to parts of the jacket, and a data

bus lead connecting the Bitsy and sensors

together.

The main focus of this project is the

sensors themselves, which despite their varied uses, are all based around the same

microprocessor, a PIC16F84A, made by Microchip Technology Inc. This is a fairly

simple 8-bit microprocessor, running at 20MHz, with only 1024 words of program

memory, along with a further 132 bytes for data storage.

5
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2.2 PIC Assembler

The PIC16F84A has a set of 35 different instructions to work with in its instruction

set, but to do what would be considered most simple tasks in a higher level language

(such as adding two numbers together), will take several instructions in PIC assembler.

Additionally, the assembly language has no built-in capability to do various operations

that are often needed in the sensors, such as ensuring that a given section of code will

take a specific amount of time, as is needed for a variety of time-dependant applica-

tions. PIC assembler is also hard to write for - most programmers in this modern age

are unused to assembler programming, and need a higher level language so that they

may concentrate on what they want to get done, as opposed to having to deal with all

of the smaller details about how repetitive parts of the program are done.

Various languages have already had tools written for them that enable writing code

for the PIC chips without having to delve into the complexities of PIC assembler.

These include various C compilers, several variants of BASIC and even a converter

from Java bytecode.

Here are a few examples of languages/translators targeted for PIC assembler

2.2.1 [JAL]

JAL is an“Algol-style meekly typed block scoped language" - also similar to some

forms of Pascal. The basic language is fairly clean and simple, but there is very little

in the language that is specific to the real-time applications and capabilities of the PIC

that are the major targets of this project. There is no scope for interrupt handling, nor

is there anything to handle timing limits on sections of code.

2.2.2 [Aino]

Aino is a translator from Java bytecode to PIC assembler. You get (most) of the basic

Java language features, but there are none of the standard Java libraries for example.

Existing code for other platforms could possibly be reused, but most of it will rely on

the normally very good standard libraries, all of which are far too large to fit onto the

PICs. There is no need to learn a new language, so old skills can be re-used. Java

is not designed for the PIC, so doing good optimization is hard and getting all of the

capabilities of the PIC from this will be very hard.

2.2.3 [C2C]

C2C is a translator from C to PIC assembler. This has the advantage of using the C

syntax - well known by most developers. But, there’s no standard C libraries - given
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that they’re mostly bigger than the total PIC storage space, this isn’t surprising. This

is the closest to my proposed ideas, but it isn’t as flexible. It does have interrupt

handling, but no major additional features on top of the basic PIC command (like

timing restraints).

2.2.4 [MicroSeeker PIC/Smalltalk]

Microseeker PIC/Smalltalk is a translator from a variant of Smalltalk to PIC assem-

bler. The use of Smalltalk can either be counted as an advantage or a disadvantage, but

as a majority of developers don’t use Smalltalk, and the syntax appears to be some-

what non-standard compared to other languages, we currently classify this as a disad-

vantage. This product also came with no documentation whatsoever. Evaluating this

product is difficult given this limit, but it doesn’t appear to have anything to particu-

larly recommend it. The automatic integration of comments into the output assembler

is a nice feature, but not worth the learning curve of a new language, given the lack of

anything else to recommend it.

2.3 Motivation for the project

A lot of the example systems mentioned above have fairly similar sets of problems,

namely either they take an existing language with feature sets guided towards desktop

or server applications and they try and add features to make it usable for PIC applic-

ations, or they try and create a new language with microprocessor specific features

(timing for sections of code for example), which is then less flexible.

They are all also based around the standard model of designing code for micro-

processor applications - compile a version of the code on a fast desktop machine once,

which outputs assembler code which you write to the microprocessor using the stand-

ard methods for PIC assembler code.

The Bitsy is a portable computer, with all of the compromises about trading speed

for lowered power consumption that is standard practice for this type of device. At-

tempting to use one of the existing language choices to re-compile the program every

time we want different code, which may well be required every time we plug/unplug a

sensor, is impractical. The cyberjacket system, in order to be usable as a device where

booting/loading times don’t need to be thought about, needs a much faster way to gen-

erate code for the sensors, while still retaining the flexibility of changing the code that

re-compilation would allow.

But what if the flexibility to do several different problems with one large program

can be left in at run time without reducing the space available for each individual

program? Normally this isn’t done because of the limited storage space of the PIC
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reduces the flexibility that can be placed in the code, but what if we can find an alternate

way around the problem?

The Bitsy doesn’t have a lot of storage space or processor capability, but if we

can figure out how to create a system that can generate PIC code at runtime that is

smaller and faster than recompilation, by reducing the number of steps to generate

PIC assembler (or at least the steps that the Bitsy has to do) then we can have a flexible

system that will work for the cyberjackets.

In order to reduce the number of steps needed for generating PIC assembler on the

Bitsy, the easiest way is to simply start further down the standard path used to compile

source code - get rid of the processor intensive text processing stages, and make the

building of the parse tree a much simpler job, by working out as much as possible

beforehand. We can do this by writing an API to give the end user programmer direct

access to the code generation steps of a language with basic standard procedural fea-

tures (e.g. loops, variables, arithmetic and boolean expressions) with some additions

for the PIC (I/O handling for example). With this, the end user can write a program

that tells our API what they want to do, as well as any other code that they want that

the Bitsy has libraries for, and we don’t have to mess around with text processing, we

can write the API so that most (as many as possible) invalid programs simply will not

compile, and we have a workable method for producing a program that can generate

PIC assembler that can be flexibly generated (i.e. change depending on the current

state of the Bitsy) without taking a long time to run on the Bitsy.



Chapter 3

Analysis of Design Choices

There are a variety of different approaches that could be taken in order to manage to

achieve the stated goals of this project. In this chapter we will analyse a series of these

choices, illustrating the differnet options and explaining why we picked the choices

that we decided to use.

3.1 Object-orientated vs. Functional approaches

Our choosing between the two approaches to the design of the API decides how we

will be able to put together code

3.1.1 Object-orientated

With an object orientated ap-

"Code" object

Add If statement

New Variable

Internal Storage of structures

Create Expression

Figure 3.1: Object orientated approach

proach, the program is built up

by first creating a “Code” ob-

ject, and then adding the list of

statements that you want to be

executed to this. The “Code”

object would also have methods

to create variables and return ref-

erences to them that can be used

with the various methods used

to add statements.
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3.1.2 Functional

A functional approach is centred

Sequence

Set Variable

x +

2 3

Set Port

Figure 3.2: Functional approach

around a series of structures, and

functions to manipulate structures.

There are different functions to

create different kinds of nodes

- for example the “+” node in

the diagram is an example of an

node representing part of a math-

ematical expression. The “2” and

“3” nodes are also mathematical

expression nodes, albeit very simple

examples, and this allows a “+”

node (or any other binary math-

ematical operator) to be used to

combine any two other expres-

sion nodes to form a new expression subtree. Making nodes generic like this allows

expressions of unlimited complexity to be built up by combining various types of node.

3.1.3 Which one?

Both the functional and object orientated approaches have both their good and bad

points, and the choice between the two is explored later on in this chapter

3.2 Timing Control

One of the stated goals of the project is providing control over how long a section of

code takes to run. Given the lack of processor support for this, this has to be built up

from the exisiting commands to create the behaviour that we want. Timing support can

be done in three different ways, either by giving a minimum time limit for a section of

code, a maximum limit or an absolute i.e. making a section always take a particular

amount of time, no matter what. What will determine which options we choose is the

problems we will have in enforcing these conditions in code. Absolute limits can be

thought of as a combination of both maximum and minimum limits, so we will just

consider the maximum and minimum cases, as absolute limts are possible if both of

the other two can be achieved. There are two different cases that we have to consider

when working out what can be done here - code with a static execution time (i.e. a

fixed sequence of instructions) and code with a dynamic execution time (looping code

with a variety of constraint conditions).



CHAPTER 3. ANALYSIS OF DESIGN CHOICES 11

3.2.1 Maximum limits

Maximum limits can be enforced on static execution time code - simply by removing

any instructions on the end of the code, but this is often destructive, unpredictable and

generally not very useful. Maximum limits also have a number of problems without

processor support in providing limits for dynamic execution code - namely that any

limits must be limited by the amount of time between checks. If, for example, we

are checking whether we have hit the upper limits every 20 processor cycles, then our

maximum limit must therefore be a multiple of 20, as all other values can’t be enforced,

as we will either check too early or too late. We can increase the rate of checking, but

then we start to spend more time checking how long we’ve taken, and not enough time

actually doing any useful work.

Because maximum limits appear to be mostly beyond our reach for this project,

absolute limits also cannot be easily enforced.

3.2.2 Minimum limits

Minimum limits are much more plausible that maximum limits. For the static case,

we just add an appropriate number of NOPs (No OPeration commands - telling the

processor to do nothing for a cycle) to the end of the code and we know that it will

take the minimum amount of time, as the time for the static code plus the time for

the NOPs is our minimum time. For the dynamic case, we can keep track of how

many iterations of the loop have been done, and with a knowledge of how long each

iteration takes we know what the minimum number of iterations necessary to exceed

the minimum execution time. At the end of the loop, if this minimum number of

iterations has not been achieved, we can use NOPs again (with a loop bounded by the

minimum number of iterations) to wait until the minimum amount of time has passed.

This is explained in more detail in section 4.6 on page 22 - “Timing”.

3.3 I/O Port handling

One of the major features of the PIC chips is a pair of output ports, totalling 13 bits of

general purpose I/O that can be used for a wide variety of applications. An important

design choice regarded how to present the ports to the end users - do we have special

functions to read and write to/from the ports, ot do we simply have them as special

cases of variables?

If the ports are to be treated as special cases of variables, then every time we do an

assignment to the variable then the port is set accordingly, and reading data from the

variable results in a read of the current data from a port. But then there are a couple

of problems with this approach. Firstly that assigning an arbitrary, run-time derived
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value, to a variable stored as a register is a simple procedure in PIC assembler, using

the W register as a temporary storage for the derived value.

But to set the output value of a port to a runtime derived value is a much harder

matter - because the standard instructions to set a port’s output value to high or low

don’t look at any of the other registers at all. The value that the port is about to be

set to is encoded into the instruction (a BCF or BSF - Bit Set/Clear F), and so to set

a port to an arbitrary value requires an if/then/else structure executing either BSF or

BCF depending on our input value. This is much more complicated than the standard

variable assignment case, and most of the complexity is unnecessary for the majority

of applications

The other problem with ports as variables is that if we read data from a variable,

and then read it again a few moments later, then unless we’ve changed it in the mean-

while, we would expect the value to be the same. This is not necessarily true with a

port, as the input data can be continuously changing. If however we create functions

that read/write from/to the ports then we force the user to deal with ports as a sep-

arate and different type of input as opposed to standard variables. This removes the

complexity mentioned above, and also allows us to have stable references i.e. internal

registers rather than changing ports, to values from outside the system.

3.4 Conclusions

Having gone through all of the main design issues, there are a number of other consid-

erations that must be thought about here. Given that

• the end program has to be able to run as quickly as possible on the Bitsy (which

is a relatively slow system)

• the Bitsy has very limited storage space

• it should be as easy as possible for programmers used to the cyberjacket systems

to convert to using this new program

The logical choices for languages to implement this program in (and to provide the end

API for) therefore are C (for functional code) and C++ (for object-orientated code) as

• Both are already being used to write programs intended for the Bitsy

• They are low enough level languages to be fast, while being of a high enough

level to allow the programmer to spend more time thinking about what they want

to do as opposed to dealing with all the small details about how they want to do

repetitive tasks.
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• Optimization of the end code can already be done, as there has been a port of

the gcc code to compile code for the ARM processor used by the Bitsy.

• All the necessary basic runtime libraries are already present on the Bitsy - thus

reducing additional drains on the Bitsy’s limited storage space

• They are already well known to most programmers - certainly to any who would

have been otherwise programming code for the PIC’s in assembler. This is less

the case for C++, but C code can then be used to interface to the C++, so the end

programmer using the API wouldn’t necessarily need to know C++, just C.

3.5 Object-orientated implementation

The object-orientated implementation has a PICCoder object which represents a block

of assembler code. This has a series of methods that can be used to generate statements,

expressions and variables. The code that was generated by the method calls was stored

internally in the PICCoder object. Other PICCoder objects were used to represent

subsections of code, as shown by the simple example below. In the example below, the

PICCoder object pic2 is used as both the true and false blocks for the ifExpr (method

for generating an “if/then/else” construct) method call.

#include <PICCoder.h>

int main() {

PICCoder *pic = new PICCoder();

// Our root PICCoder object

PICCoder::Variable *x = pic->newVariable(1);

// Create a variable, initialize it’s value to 1

PICCoder::Variable *y = pic->newVariable(4);

// Create another variable, initialize it’s value to 4

PICCoder::Variable *z = pic->arithExpr(x,’+’,y);

// Apply the operator ’+’ to the variables x and y, and put the value in z

PICCoder *pic2 = new PICCoder();

// Make another PICCoder object

PICCoder::Variable *n = pic2->newVariable(1);
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// Make a new Variable with the 2nd PICCoder object. Variables in the system

are in fact global in scope, and so which PICCoder we use to create the

Variable doesn’t matter.

pic->ifExpr(z,"=",y,pic2,pic2);

// Add an if/then/else block to the main code, with the expression “does z equal

y?” and pic2 to be executed for both the “then” and “else” cases (note that

reusing the same block for both is unlikely in production code, but could

be optimized to just call the pic2 code automatically without doing the test

of the expression)

pic->outputcode();

// Output the code from the PICCoder object.

return 0;

}

At this stage in development the functionality of the system is limited (for example

there is a method for setting minimum running times for blocks of code, but it is only

a stub method for storing the running time length, without any capability to try and

actually make sure this happens in the end code), but there is enough there to evaluate

the overall direction of the design.

There are a number of significant problems here. In the very common case where

a new block containing sub-blocks (If/then/else for example, as it contains two sub-

blocks for its “then” and “else”) is added, it is possible that the sub-blocks haven’t

yet been defined fully (i.e. more commands will still be added to them) and from the

design it is uncertain whether or not additional commands will be run or not.

e.g. assuming pic and pic2 are existing PICCoder objects, and that z and

y are Variables (as in the above example)

pic->IfExpr(z,”=”,y,pic2,pic2);

pic2->SetVariable(z,4);

What does this do? Does the IfExpr get created with the instructions stored in pic2 at

the time that IfExpr is called, or does it get created with the SetVariable code added to

the pic2’s as well? It depends on how the instructions are stored internally, and this is

something that the end user should know as little as possible about, as otherwise they

could easily get confused, and also future versions of the PICCoder need to work in

the same way - which should not be the case, because otherwise we can’t ever change
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anything, as we don’t know what the user is depending on. We need to make sure that

everything the user knows about the system is the API that we export - that needs to

stay stable (or at least backwards compatible), but our internal implementation should

be changeable.

This problem is caused by the fact that we are using objects to represent blocks of

code, and so when a user specifies an object, the system could store the link as to the

object by value or by reference, and either way has the potential to cause confusion as

the user has to know which one we’re using.

Given that storing our code as C++ objects is going to cause these problems,

and that if we’re not going to use objects at all, then the small speed increases of C

over C++ (especially on a low specification system like the Bitsy) make the language

change worthwhile and so the C++ implementation was discarded.

3.6 Functional Implementation

The initial version of the functional implementation used code like displayed below.

This is remarkably similar to the code used for the C++ implementation, with

CodeNode structures replacing the previous references to both Variable’s and PIC-

Coder objects. This version still has a lot of the problems of the C++ implementation,

as the addToBlock() method for example alters the “block” variable in situ, indicating

that a stable reference to the “block” variable exists, and therefore still allowing the

problems with the C++ implementation. A good example of this is the set_minsize

function - this actually sets the minimum runtime for everything that ever gets placed

in the “block” variable, not just whatever has been stored in there at the current time.

#include <PICCoder.h>

int main() {

pic_start(); { // initialisation of the PIC library

CodeNode *x = newVariable(1); // Create a new variable with initial value

1

CodeNode *block = newBlock(); // Create a new code block

addToBlock(block,ifExpr(buildBoolean(newConstant(1),"==",newConstant(4)),newStub(),newStub()));

// build an if/then/else expression with the boolean expression “1 == 4”

and a pair of stub blocks (blocks with no content) as the “then” and

“else branches
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addToBlock(block,setVar(x,newConstant(5))); // add a “set the Variable

x to 5” statement to the “block” code block

set_minsize(block,30);// set the minimum runtime of the “block” code

block to 30 cycles

outputcode(block); // output the code from the code block “block”

}

pic_destroy();

return 0;

}

Initial C implementation

This was then adapted to try and remove some of the ambiguities. Important

changes include

• the pic_start() and pic_destroy() code has now been folded into outputcode, as

none of the internal structures that are in pic_start/pic_destroy are used either

before or after outputcode.

• addToBlock() has been renamed to makeBlock(), and now returns a reference

to a new block consisting of everything in the first argument block along with

everything in the second argument’s block, which allows for the use of nested

function calls to create complex structures, without the need for variable declar-

ations for each part.

• set_execcycles() (was set_minsize() in the previous implementation, renamed

for clarification purposes) now also returns a reference to a new block - a ver-

sion of the old block that has been surrounded with a “wrapper” structure that

indicates that it’s internal block should take a particular minimum number of

cycles to execute.

• Block types have now been altered completely. The old CodeNode (with it’s

“one size fits all” mentality) has been discarded in favour of S_Node (Statement

Node - both representing a statement and a sequence of statements chained to-

gether), V_Node (Variable reference), E_Node (Expression Node - not explicitly

declared here, but the VtoE function is used to provide an E_Node reference

to a variable, and the newConstant() function returns a E_Node) and B_Node

(Boolean expression - outputted by buildBoolean in the example)
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• The alteration of the block types, along with the changing of buildBoolean to

take a enum specified value (BOOL_EQ) for the operator (this is also the case

for the arithmetic operation creation method arithExpr, but this is not used in

the example) has vastly reduced the number of programs that would compile but

wouldn’t run. Arguments to methods can now be limited to only the type that

is a valid value of the argument (numeric expressions for each side of a boolean

expression for example). This results in a lot of potential bugs in code being

caught a lot earlier, and at compile time, rather than being caught after the end

program has been loaded onto the Bitsy.

#include <PICCoder.h>

int main() {

V_Node *x = newVariable(NULL);

V_Node *y = newVariable(NULL);

S_Node *_master = makeBlock(setVar(x,newConstant(8), setVar(y,newConstant(12)));

S_Node *_t1 = set_execycles(setVar(x,newConstant(12))),20);

S_Node *_t2 = setVar(x,newConstant(12));

_master = makeBlock(_master, ifExpr(buildBoolean(VtoE(x), BOOL_EQ, VtoE(y)),_t2,

_t1));

outputcode(_master);

return 0;

}

SecondC implementation

3.7 Higher-level language

While working on the functional implementation, an attempt at designing a higher-

level language to make it easier to write the C code for the functional implementation

was experimented with. The attempt revolved around ideas about using Lex, Yacc and

a tree-walker generator called Memphis to make a Pascal-like language that could be

used to think of the code at an even simpler and more abstracted level than the increas-

ingly complex C code. An example of the code is below. Most of it should be fairly

self-explanatory, except the [number]’s after “}” - this indicates that the block ended
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with the “}” should take at least “number” cycles to execute. This was eventually re-

jected, because of the limited number of additional features that this added, and the

additional time needed to keep this and a rapidly-developing functional API in sync

with each other.

// greatest common divisor

{

x = 8

y = 12

while (x != y)

{

if (x > y)

{

x = x-y

} [30]

else {

y = y-x

} [25]

}

if (x > 2) {

set porta,1

}

}



Chapter 4

API Description

In this chapter we look at the API that we have produced. The API provides a series of

different functions and data for creating commands for the PIC, by allowing the end-

user programmer to combine different structures together to form a complete code tree,

and to generate PIC code from that tree.

4.1 Node Types

• V_Node - V(ariable) node - a reference to a variable stored in a register

• E_Node - E(xpression) node - this is anything that can have a value returned

from it. It could be a constant, a V_Node, an arithmetic expression or it could

even be a reference to one of the I/O ports of the PIC

• S_Node - S(tatement) node - these can be NULL, or they could be a single

statement, or a set of statements. A NULL is treated as a series of statements

of length 0. For multiple statements, these are chained together in a linked list

formation.

4.2 Variables and Constants

V_Node* newVariable(E_Node *init)

newVariable() creates a new V(ariable) node, initialised to the result of the E(xpression)

node init. init can be NULL, in which case the variable is uninitialised, and any reads

from it before a write will result in an undefined result.

E_Node* VtoE(V_Node *init)

19
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VtoE creates an E_Node reference to a V_Node - because all V_Node’s can be-

come valid E_Node’s (because they can be read from) but not all E_Node’s are valid

V_Node’s (as not all expressions can be written to, only the one’s that are wrappers

around a V_Node)

E_Node* newConstant(DATA init)

newConstant creates a reference to a constant value, of type DATA. DATA is defined

as to limit the valid values for “init” to between -128 and +127 (which are the integer

limits for simple calculations on the PICs)

S_Node* setVar(V_Node *a,E_Node *setme)

setVar sets the V_Node “a” to the output of the E_Node “setme”. This allows for

all types of assignment, from constants and incrementing of V_Node’s, through to

complex mathematics.

S_Node* setVariableBit(V_Node *input, unsigned int bit)

S_Node* clearVariableBit(V_Node *input, unsigned int bit)

set/clearVariableBit() set/clear individual bits of a V_Node, allowing for precision al-

terations of a V_Node for a variety of uses.

V_Node* getTimer()

getTimer provides one of the special case variables. The V_Node returned by this

function is in fact a reference to the TMR0 register allowing reading and writing to the

PIC’s internal timer module, which increments every instruction cycle.

S_Node* rotateVarLeft(V_Node *input)

S_Node* rotateVarRight(V_Node *input)

rotateVarLeft/Right performs a rotate shift on the specified V_Node, either to the Left

or to the Right (depending on which method has been called). This rotate is performed

in conjunction with the Carry bit of the Status register, so the use of noCarry may well

be useful in combination with this instruction.
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4.3 Expressions

E_Node* arithExpr(E_Node* x,arithop c,E_Node* y)

arithExpr creates an arithmetic expression, by combining a pair of E_Node’s with a

binary arithmetic operator. Valid values for arithop are

• ARITH_PLUS - addition

• ARITH_MINUS - subtraction

• ARITH_TIMES - multiplication

• ARITH_DIVIDE - division

This results in another E_Node which could then be given to another call of arithExpr

to build up more complex operations.

B_Node* buildBoolean(E_Node *a,booleanop op, E_Node *b)

buildBoolean creates a boolean expression, by combining a pair of E_Node’s with a

binary comparison operator. Valid values for booleanop are

• BOOL_EQ - equality

• BOOL_NE - not equal

• BOOL_LT - less than

• BOOL_LE - less than or equal to

• BOOL_GT - greater than

• BOOL_GE - greater than or equal to

The resulting B(oolean)_Node is used for if and while expressions. Building more

complicated boolean expressions is not possible with the API currently, mainly be-

cause this is something that is very rarely used.

B_Node* testVariableBit(V_Node *input, unsigned int bit)

testVariableBit creates a boolean expression that returns True if the nth bit of “input”

(where n = “bit”) is ’1’, and False if it is ’0’.

B_Node* noCarry()

noCarry() is intended as an addition for easier conversion of existing assembler code.

The B_Node that noCarry returns will return True if the Carry bit is not set, and False

if it is. This is most commonly used in combination with the rotateVarLeft/Right

methods.
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4.4 Blocks

S_Node* makeBlock(S_Node* first, S_Node* second)

makeBlock returns an S_Node consisting of all of the contents of “first” followed by

all of the contents of “second”. Note that both first and second could be NULL, or they

could be a single statement, or a set of statements, because the API allows all of these.

If either is NULL, then this can be thought of as a S_Node with no statements in at all,

and so all the possibilities for the input S_Node’s can be dealt with appropriately.

4.5 Control Statements

S_Node* ifExpr(B_Node *a,S_Node *dotrue, S_Node *dofalse)

ifExpr creates an if/then/else expression. The B(oolean)_Node a is evaluated, and if it

results in true, then the S_Node “dotrue” is executed, otherwise “dofalse” is executed.

Note that either (or both) dotrue and dofalse can be NULL if you wish to not do

anything on a particular branch.

S_Node* whileExpr(B_Node *a, S_Node *block)

whileExpr creates a while loop. The B_Node a is evaluated, and while it is true, the

S_Node “block” is repeatedly executed. “block” can be NULL if you want to create a

loop that waits for something.
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4.6 Timing

S_Node* set_execcycles(S_Node *c, unsigned int s)

set_execcycles returns an S_Node that
Initialisation
 (D cycles)

Loop test
(A cycles)

Main Loop body
(B cycles)

Check for > minimum cycles done

Check for minimum cycles done

Wait

Wait
(F cycles)

Done

Figure 4.1: While loop diagram

will execute the S_Node “c” with a guar-

antee that it will take at least “s” pro-

cessor cycles to execute. In order to do

this guarantee there are a number of prob-

lems that must be dealt with, but the one

that may cause this command to fail is

when it is impossible to determine how

long a section of code will take to run.

This happens with while loops, which

will take an amount of time that is un-

known at compile time, as their execu-

tion time depends on how many loops

are done, and this isn’t something that is

generally known until runtime. There-

fore, set_execcycles will work either with

S_Node’s that do not contain any while

loops at all, or with S_Node’s that are

the return value from a whileExpr - these

will have a guaranteed minimum runtime.

How do we achieve a fixed minimum runtime

for a section of code with a dynamic runtime?

4.6.1 While loop timing

A while loop with an overall guaranteed minimum runtime can be created by the fol-

lowing algorithm

• calculate the runtime of the boolean expression and a conditional jump that will

be evaluated on each loop around, assuming that it doesn’t jump - this is A

• calculate the runtime of each iteration of the while loop - not including the

boolean expression check, but including the branch back to the beginning - this

is B. This must be a constant value, so no while loops inside this code are al-

lowed, and any if /then/else statements have the shorter of their two branches

padded to make sure that both branches always take the same time.
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• C is the minimum runtime

• If A < C then we add to the main code an increment of a counter and re-evaluate

B. Otherwise, the while loop code is output now as just a standard while loop

without any timing code.

• D is the length of code needed to initialise the counter at the beginning of the

loop

• E is the minimum number of iterations needed to meet the minimum runtime -

equal to (C - D)/(A+B), then rounded down to the nearest integer

• F is the remainder of (C - D)/(A+B) (i.e. [(C - D)/(A+B)] - E), subtract (A+1) -

so the net result is [(C - D)/(A+B)] - E - (A+1). (We add one to the time for the

last iteration of A, as the last check of the boolean expression must have failed

in order for an exit from the while loop to have occurred and conditional jumps

on the PIC take 2 cycles if taken, or 1 if not.)

The end code for the while loop is therefore this set of instructions in the order below

• Initialisation of the counter (should take D cycles)

• The boolean expression check, with a branch over the main loop if we get a

false result, as per standard while loops (should take A cycles, except on the last

check which gets the false result, which will take A+1)

• The main loop - including counter increment code (should take B cycles)

• If our counter is now greater than E, jump beyond all of the code listed below,

as we’ve done more than the needed number of iterations.

• The following set of instructions is then executed until the test fails - this subloop

must take A+B cycles per iteration

– the counter variable is checked against the value E, and if the counter is

equal to E, then we exit this loop

– the counter is incremented

– a series of NOPs - number of which will be altered to fit the size require-

ments of this loop - some of this may be looped e.g. write commands to

loop around 5 times at 10 cycles/iteration rather than writing out 50 NOPs

for example

– a branch back to the start of this sub-loop



CHAPTER 4. API DESCRIPTION 25

• Another series of NOPs (or loops containing NOPs) will be executed, except

this one is F cycles long.

So therefore,

time taken= D+[(number o f iterations o f main loop+ iterations o f padding loop)∗
(A+B)]+(A+1)

(plus F instructions if we had exactly the minimum number of loops, to make up

the minimum number of cycles)

which is greater than or equal to the minimum execution time, because

• the total number of loops (both the main and padding loops) is greater than or

equal to E - call this G

• so what gets executed is

– D cycles to initialise the counter

– G iterations of A+B cycles i.e. either the main loop with a succeeded

boolean check or a padding section of the same length

– A+1 cycles for the failed boolean check, because the test must have failed

once, otherwise we never would have exited the while loop

– F instructions of end padding if needed

which gives us a while loop that will take at least the minimum number of instructions.

e.g. For a while loop that needs to take at least 110 cycles, with an A time (boolean

expression + failed conditional jump) of 5, a B (main loop) time of 13 and assuming

that D (counter initialisation) is 2 cycles.

• A < C so we need the timing code

• Adding the counter code to the main loop increases B from 13 to 15

• E (minimum iterations) = (C - D)/(A+B) = (110-2)/(5+15) = 5.4. Rounded down

to 5

• F (remainder of the E calculation, minus (A+1)) = [(C - D)/(A+B)] - E - (A+1)

= [(110-2)/(5+15)] - 5 - (5+1) = 8 - 6 = 2 cycles

4.7 Port Commands

S_Node* setPort(pic_port port, int pin)

S_Node* unsetPort(pic_port port, int pin)
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These sets one of the I/O pins of the PIC to being an output pin, and to either outputting

a “1” signal (for setPort) or a “0” signal (for unsetPort). The value of port is either

PORT_A (for the A I/O port) or PORT_B (for the B I/O port). The pin is either in the

range 0-7 for port A, or 0-3 for port B.

E_Node* readPort(pic_port port, int pin)

readPort sets the specified port (specification as for setPort/unsetPort), and then reads

the current input signal to that port (either 0 or 1). The result of which is the value of

the return E_Node.

4.8 Output

void outputcode(S_Node *top)

This outputs the code for the specified S_Node onto standard output.



Chapter 5

Comparison with existing code

The intention of this project has been to provide an easier way to write code for the

PICs, and giving more features to the programmer. In this chapter we will look at

a real-world existing example of an existing program for one of the sensors, and a

version of the same program written using the API from this project.

5.1 Existing assembler code

The existing assembler program that we are comparing against is for one of the ac-

celerometer sensors for the cyberjackets. The original program was written by Chris

Djiallis, and parts of the code are also based on earlier work by Cliff Randell. The full

text of the assembler program is in Appendix A.

5.2 New C code

The new program has been written by myself using the new API. Some parts of it have

been translated directly across from the original code, and others have been re-written

to better use various features of the API. A number of pieces of code that would never

have been run in the original code have been removed entirely. The names of the

macros have been mostly retained as function names for the various sections of code,

in order to ease a comparison between the two different methods of coding. The full

text of the API-using C code is in Appendix B.

5.3 Improvements

Various features of the new C code were particularly good examples of how the con-

version helped the readability and maintainability of the program

27
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• the XMIT function - in the assembler, the first part of XMIT is reliant on the

byte to be sent being already loaded into W. In the C version, the fact that XMIT

effectively takes an argument is much more explicitly specified as the XMIT

function is defined as taking an E_Node as input.

Assembler code for XMIT:

XMIT MOVWF SER_TX

MOVLW NUMBIT+1

MOVWF BITCNT

TXLOW

GOTO XMITC

XMITA RRF SER_TX,1

SKPNC

GOTO XMITB

TXLOW

GOTO XMITC

XMITB TXHI

XMITC WAITEM

TSTF BITCNT

SKPNZ

RETURN

DECFSZ BITCNT,1

GOTO XMITA

TXHI

GOTO XMITC
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C Code for XMIT:

S_Node *XMIT(E_Node* tostore)

{

S_Node *ret = makeBlock(

setVar(SER_TX,tostore),

setVar(BITCNT,newConstant(NUMBIT+1))

);

ret = makeBlock(ret,TXLOW());

return makeBlock(ret,whileExpr(buildBoolean(VtoE(BITCNT),BOOL_EQ,newConstant(0)),XMITC()));

}

S_Node* XMITC()

{

S_Node *doifNZ = makeBlock(

setVar(BITCNT,

arithExpr(VtoE(BITCNT),ARITH_MINUS,newConstant(1))

),

ifExpr(buildBoolean(VtoE(BITCNT),BOOL_EQ,newConstant(0)),

makeBlock(

ifExpr(testVariableBit(SER_TX,0),TXLOW(),TXHI()),

rotateVarRight(SER_TX)

),

TXHI()

)

);

return makeBlock(doifNZ,WAITEM());

}

The C Code is easier to read, easier to maintain, and is clearly specified - it is

clear from just the first line of the function prototype what data is going into the

function. With the assembler, you can read that the first line of the macro stores

whatever is currently in W, and it is possible to deduce that therefore you should

make sure that something useful is in W before you call this macro, but this is

not something that the language makes clear.
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• the MUL function - this has been removed entirely from the C version of the

code, as the API provides a built in way to multiply two numbers together. Mul-

tiplying two numbers together is something that happens frequently in programs.

It shouldn’t be necessary to put the code to do this standard function in every

program that uses it, it should be supplied by the language that the program is

written in. The C version simply adds in the multiply code to its output whenever

it is actually needed, without needing end-user intervention.

• the BITIN function - the C function BITIN is a combination of the code for

the BITIN1 and BITIN2 macros in the assembler, as they only ever differed by

one argument to a single instruction, but in assembler combining them would be

have been more effort that it was worth.

Assembler code for BITIN1:

BITIN1 MACRO

MOVLW BAUDSET

MOVWF TMR0

BITINA1 TSTRTC

SKPZ

GOTO BITINA1

RRF SER_RX,1

BCF SER_RX,7

BTFSC PORTB, RXD1

BSF SER_RX,7

ENDM
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C Code for BITIN (note that this replaces both BITIN1 and BITIN2):

S_Node *BITIN(int pin)

{

S_Node *ret = setVar(getTimer(),newConstant(BAUDSET));

ret = makeBlock(ret,whileExpr(buildBoolean(VtoE(getTimer()),BOOL_EQ,newConstant(0)),NULL));

ret = makeBlock(ret,rotateVarRight(SER_RX));

ret = makeBlock(ret,ifExpr( buildBoolean(readPort(PORT_B,pin),BOOL_EQ,newConstant(0)),

clearVariableBit(SER_RX,7),

setVariableBit(SER_RX,7)

));

return ret;

}

The C code, by replacing both the functions not only reduces overall code size, it

decreases the amount of maintenance needed to alter the program as any changes

to the BITIN routine only need to be done in one place, as opposed to 2 for the

assembler version.

Even allowing for reasonable levels of commenting in both of the programs, the C

version is almost 50% smaller (270 lines v.s. 523 lines for the the assembler version),

because the C version can do more work for each method, rather than having to enter

in 2 or 3 assembler instructions in order to do even simple tasks.



Chapter 6

Conclusions

In this chapter we will look at what we have managed to achieve. Did we achieve all

our goals, and how could we improve on what we have done?

6.1 Goals

We achieved the main goals of the project. A faster method of writing PIC code has

been written. The API is not only sufficiently broad to handle most of the standard

features of the PIC microcontrollers, it also adds various features of its own. Timing

control has been implemented, and works for code that has dynamic execution times,

without the end-user having to deal with all the complexities that that causes. While

loops and if/then/else structures, with a full set of basic boolean operatives have also

been added. Complex mathematical expressions can be easily built up, and the multi-

plication and division operators (albeit for integer numbers only) have been added to

the choices available.

6.2 Further development

The generated assembler from the API functions could be further optimised, but this

would not require alterations to the end-user accessible functions as documented in

Chapter 4. One important optimisation would be the use of CALL to implement re-

peated function calls. Various PIC features are still missing from the API (interrupt

handing for example), but there is a sufficient subset of the functionality present to

allow a wide variety of programming with the PIC.

One interesting additional feature would be non-integer numbers. These would

have to be handled internally as integers, but would provide a greater degree of flexib-

ility to the users.

32
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6.3 Conclusions

One example of what this project’s API can be used to implement is programs that

change what code they output depending on the current state of the Bitsy, for example

changing for different times of day or different code for the 1st sensor of a series

as opposed to later ones - this could be used for auto-generating ID numbers for the

sensors.

It is an enabling technology, allowing greater expression of the end-user’s wishes

by reducing the amount of work required to do simple operations, freeing them to

spend more time thinking about what they want to do, as opposed to having to deal

with the minor details of how standard, machine-generatable parts of the program will

work. The options for what can be done using the API are endless - the only limit is

the imagination of the end-user programmer.
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; acc.asm by Chris Djiallis based on gps.asm by Chris Djiallis and MultiPIC.asm by Cliff Randell
;
; DATE July 2001
; ITERATION 0.0
; FILE SAVED AS acc.asm
; FOR PIC16F84A PWRTE=off WDT=off CP=off
; CLOCK 10 MHz Crystal
; INSTRUCTION CLOCK 2.5 MHz T= 400ns

TITLE "acc.asm − PIC interface for Accelerometer device to PC (filtered) comms"

LIST P=16F84A

__config 3FF9h

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; This program is intended to provide an interface between
; an Accelerometer and a processor with a serial RS232 port.
;
; Requests from the processor are in the form of $SA... are responded to
; with data also in the form $RA*******.
;
; The format of the serial data is 4800 baud, 1 start, 1 stop and 8
; data bits with no parity.
;
; For use with DS275 RS232 Serial interface chip,
; i.e uses normal polarity − not inverted.
;
;
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;       Generic Definitions
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

INDF EQU H’0000’
TMR0                    EQU     H’0001’
STATUS EQU H’0003’
FSR                     EQU     H’0004’
PORTA                   EQU     H’0005’
TRISA EQU H’0005’
PORTB                   EQU     H’0006’
TRISB EQU H’0006’

RP0 EQU 5

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;   Physical Port Assignment
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

COMPORT EQU PORTA ; Serial comms ports

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;   Physical Bit Assignment
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

TXD EQU .1 ; Location of data on port A
RXD1 EQU .0
X_IN EQU .1
Y_IN EQU .0

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
;   Constant Assignment
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MEMBAS EQU 008H ; Start of user ram registers

; Baud rate and software uart constant definitions

BAUDIV EQU b’00000010’ ; Rtcc setting for 3.2us tick with 10MHz clock
BAUD EQU .61 ; 4800baud−208us 2400baud−416us 1200baud−833us

; 65 ticks of 3.2us = 208us
                                ; reduced to 61 on test (instruction delay)

BAUDSETEQU 100H−BAUD ; Element time
BAUDHAFEQU BAUDSET+BAUD/2 ; Half element time
BAUDSTREQU 100H−BAUD−BAUD/2 ; (1 + 1/2) element time to drop

; start bit on data receive
NUMBIT EQU .8 ; Number of transmit serial data bits

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; Variable Assignment
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SER_RX EQU MEMBAS ; Serial shift register for data rx
SER_TX EQU     SER_RX+1 ; Serial shift register for data tx
BITCNT EQU SER_TX+1 ; Counter of bits received



FLAG EQU BITCNT+1 ; 8 general purpose flag bits held here

ITERATOR   EQU  FLAG+1 ; |
COEFF      EQU  ITERATOR+1 ; |
COUNT      EQU  COEFF+1 ; > used by MUL (multipy) routine
RESULT     EQU  COUNT+1 ; |

ASC        EQU  RESULT+1 ; used by ASC2DEC routine

COUNTER    EQU  ASC+1
T1_X       EQU  COUNTER+1
T1_Y       EQU  T1_X+1
T2         EQU  T1_Y+1

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; Reset and start
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ORG 00
GOTO SETUP

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; Macros
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

;******
; TSTRTC moves TMR0 to W reg and sets ZERO status

TSTRTC MACRO
MOVF TMR0,0 ; Test for timeout
ENDM

;******
; TXLOW sets the transmit data RS232 line 1 low for a MARK

TXLOW MACRO
BCF PORTB, TXD
ENDM

;******
; TXHI sets the transmit data RS232 line 1 high for a SPACE

TXHI MACRO
BSF PORTB, TXD
ENDM

;******
; BITIN gets a bit from serial input and shifts into bit 7 of ’SER_RX’.
; First the state of the serial input line is monitored for change
; and if it changes the clock is re−synced.
; Enter with clock sync’d TO LAST SAMPLE and rtc set for 1/2 element.
; When the timer expires the data is read and on exit the carry is set
; to the state of bit 0 of ’SER_RX’ before the shift which is used to
; monitor position of the bit count flag bit.

BITIN1 MACRO
MOVLW BAUDSET ; Load 1 element time −
MOVWF TMR0 ; − and preset the baud rate divider

BITINA1 TSTRTC
SKPZ ; Skip if rtc was zero
GOTO BITINA1 ; Loop until timer zeroes

; Timer has zeroed, shift SER_RX, sample data and exit

RRF SER_RX,1 ; Shift data to make way for next bit
BCF SER_RX,7 ; Clear Serial bit 7

 BTFSC PORTB, RXD1 ; Test receive data
BSF SER_RX,7 ; Set Serial bit 7 − data was high i.e. a ’1’
ENDM ; Exit from BITIN1

;−−−−−−−−−−−−−−−−−−BITIN2−−−−−−−−−−−−−−−

BITIN2 MACRO
MOVLW BAUDSET ; Load 1 element time −
MOVWF TMR0 ; − and preset the baud rate divider

BITINA2 TSTRTC
SKPZ ; Skip if rtc was zero
GOTO BITINA2 ; Loop until timer zeroes

; Timer has zeroed, shift SER_RX, sample data and exit

RRF SER_RX,1 ; Shift data to make way for next bit
BCF SER_RX,7 ; Clear Serial bit 7

 BTFSC COMPORT,RXD2 ; Test receive data
BSF SER_RX,7 ; Set Serial bit 7 − data was high i.e. a ’1’



ENDM ; Exit from BITIN2

;******
; WAITEM waits for one element time.

WAITEM MACRO
LOCAL WAIT_1
MOVLW BAUDSET ; Get the baud divider preset −−
MOVWF TMR0 ; −− and preset the baud rate divider

WAIT_1 TSTRTC ; Read the RTC divider
BNZ WAIT_1 ; Loop until divider zeroes
ENDM

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; Subroutines
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

;******
; XMIT sends the 8 bit (or less) byte in W reg to the transmit data
; port as an async data byte with 1 start and 1 stop bit with the least
; significant bit first.

XMIT MOVWF SER_TX ; Data shifter
MOVLW NUMBIT+1 ; Get the bit count + 1 for start bit
MOVWF BITCNT ; Preset data bit (down) counter

; Send the start bit

TXLOW ; Set start bit level
GOTO XMITC ; Wait for start element to go

; Set the transmit data level from the carry and wait for an element

XMITA RRF SER_TX,1 ; Clock shift register RIGHT through carry
SKPNC ; If data (carry) is ’0’, skip
GOTO XMITB
TXLOW ; Data is ’0’
GOTO XMITC

XMITB TXHI ; Data is ’1’
XMITC WAITEM ; Wait for the element to go

; Count the elements as they are sent

TSTF BITCNT ; Zero if just sent the stop bit
SKPNZ ; Skip next if bit count is not zero
RETURN ; Exit from XMIT

DECFSZ BITCNT,1 ; Dec. bit count, skip if zero
GOTO XMITA ; Loop until all bits are sent

; Bit count has zeroed, send the stop bit

TXHI ; Set stop bit
GOTO XMITC ; Wait for the stop bit to go

;******
; RXBYTE receives and dumps the start bit. Receives 8 bits into
; ’SER_RX’ with the most significant bit received first and then dumps
; the stop bit.

; First, test for the LOW start bit at the beginning of the byte.

RXBYTE1 BTFSC PORTB, RXD1 ; Test receive data
GOTO RXBYTE1 ; Data is still high so loop until

; start bit (low) is seen.

MOVLW BAUDHAF ; Load half element time −
MOVWF TMR0 ; − and preset the timer

WAIHAF1 TSTRTC ; Read the RTC divider
BNZ WAIHAF1 ; Loop until divider zeroes

BTFSC PORTB, RXD1 ; Test receive data is still low
GOTO RXBYTE1 ; Data is high so loop until a real

; start bit is seen.

; Start edge seen (low level) − set timer for 1 elements which
; causes BITIN to go to first data bit.

MOVLW BAUDSET ; Load one element time −
MOVWF TMR0 ; − and preset the timer
MOVLW b’10000000’ ; Bit 7 is shifted with data and flags 8 rx’d.
MOVWF SER_RX ; Initialise serial data register

RXBIT1 BITIN1 ; Get a data bit
BNC RXBIT1 ; Loop until the ’carry’ bit appears



; Received character is in SERIAL, now dump the stop bit

WAITEM ; Dump stop bit
RETURN ; Exit from RXBYTE1

;−−−−−−−−−−−−− RX_MASK −−−−−−−−−−−−−−−
;
; >> receive mask data
;
;−−−−−−−−−−−−− RX_MASK −−−−−−−−−−−−−−−

RX_MASK CALL RXBYTE1 ; read first char of Lat data
MOVF SER_RX,0
;MOVWF LATD1

        RETURN

;−−−−−−−−−−−−− MUL −−−−−−−−−−−−−−−
;
;    i.e. result = coeff x iterator,
;         iterator set before call,
;         coeff set before call
;
;−−−−−−−−−−−−− MUL −−−−−−−−−−−−−−−

MUL     CLRF    COUNT          ; count = 0
        CLRF    RESULT         ; result = 0
LOOP    MOVF    RESULT, 0      ; W = result
        ADDWF   COEFF, 0       ; RESULT = W + COEFF
        MOVWF   RESULT
        INCF    COUNT, 0       ; COUNT++
        MOVWF   COUNT
        XORWF   ITERATOR, 0    ; test if count = iterator
        BTFSS STATUS, 2
        GOTO    LOOP           ; test is false
        RETURN                 ; test is true

;−−−−−−−−−−−−− ASC2DEC −−−−−−−−−−−−−−−
;
;    >> ascii char in ASC before call
;    >> decimal value in W on return
;
;−−−−−−−−−−−−− ASC2DEC −−−−−−−−−−−−−−−

ASC2DEC MOVLW   .48
        SUBWF   ASC, 0
        RETURN

;−−−−−−−−−−−−− PROC_MK −−−−−−−−−−−−−−−
;
;    >> process mask data
;
;−−−−−−−−−−−−− PROC_MK −−−−−−−−−−−−−−−

PROC_MK MOVLW   .10
        MOVWF   ITERATOR        ; iterator = 10
        ;MOVF    LATD1, 0
        MOVWF   ASC
        CALL    ASC2DEC         ; after call, decimal value of LATD1 is in W
        MOVWF   COEFF           ; COEFF = ASC2DEC(LATD1)
        CALL    MUL

        ;MOVF    LATD2, 0
        MOVWF   ASC
        CALL    ASC2DEC
        ADDWF   RESULT, 0
        ;MOVWF   M_DEG           ; M_DEG contains decimal value of mask degrees value

        MOVLW   .10
        MOVWF   ITERATOR        ; iterator = 10
        ;MOVF    LATM1, 0
        MOVWF   ASC
        CALL    ASC2DEC         ; after call, decimal value of LATM1 is in W
        MOVWF   COEFF           ; COEFF = ASC2DEC(LATM1)
        CALL    MUL

        ;MOVF    LATM2, 0
        MOVWF   ASC
        CALL    ASC2DEC
        ADDWF   RESULT, 0
        ;MOVWF   M_MIN           ; M_MIN contains decimal value of mask minutes value

        RETURN



;−−−−−−−−−−−−− TX_DATA −−−−−−−−−−−−−−−
;
;    >> transmit accel to PC
;
;−−−−−−−−−−−−− TX_DATA −−−−−−−−−−−−−−−

TX_DATA MOVLW ’$’
CALL XMIT

        MOVLW ’R’
CALL XMIT

MOVLW ’A’
CALL XMIT

MOVLW ’0’
CALL XMIT

MOVF T1_X, 0
CALL XMIT

MOVF T1_Y, 0
CALL XMIT

MOVF T2, 0
CALL XMIT

        MOVLW   ’;’
        CALL    XMIT

MOVLW ’\n’
CALL XMIT

RETURN

;−−−−−−−−−−−−− READACC −−−−−−−−−−−−−−−
;
;    >> read acceleration
;
;−−−−−−−−−−−−− READACC −−−−−−−−−−−−−−−

READACC CLRF COUNTER ; set counter to zero
READ_X BTFSC PORTA, X_IN ; wait for X_IN to be low (for synchronisation)

GOTO READ_X

WAIT_H BTFSS PORTA, X_IN ; wait for first rising edge
GOTO WAIT_H

LOOP_X NOP ; start counter / delay
NOP
;NOP
INCF COUNTER, 1
BTFSC PORTA, X_IN ; wait for first falling edge
GOTO LOOP_X
MOVF COUNTER, 0 ; T1_X = COUNTER
MOVWF T1_X

CLRF COUNTER ; set counter to zero

READ_Y BTFSC PORTA, Y_IN ; wait for Y_IN to be low (for synchronisation)
GOTO READ_Y

WAIT_H2 BTFSS PORTA, Y_IN ; wait for first rising edge
GOTO WAIT_H2

LOOP_Y NOP ; start counter / delay
NOP
;NOP
INCF COUNTER, 1
BTFSC PORTA, Y_IN ; wait for first falling edge
GOTO LOOP_Y
MOVF COUNTER, 0  ; T1_Y = COUNTER
MOVWF T1_Y

LOOP_Y2 NOP
NOP
;NOP
INCF COUNTER, 1
BTFSS PORTA, Y_IN ; wait for second rising edge
GOTO LOOP_Y2
MOVF COUNTER, 0 ; T2 = COUNTER
MOVWF T2



MOVF T1_X, 0;
;SUBLW .65 ; calibrate X
MOVWF T1_X

MOVF T1_Y, 0;
;SUBLW .65 ; calibrate Y
MOVWF T1_Y

RETURN

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; Cold start setup
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SETUP CLRF FSR
TXHI ; Idle the transmit line as a mark

BSF STATUS,RP0 ; Select Bank 1
MOVLW b’00000011’ ; Set Port A
MOVWF TRISA
MOVLW b’00000001’ ; Set Port B
MOVWF TRISB
MOVLW BAUDIV ; Set TMR0 for baud rate tick
MOVWF TMR0
BCF STATUS,RP0 ; Select Bank 0

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; Main program start
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

BSF PORTB, TXD
MAIN CALL RXBYTE1

MOVF SER_RX,0
        XORLW ’$’ ; test if $ symbol

BTFSS STATUS, 2
GOTO MAIN

CALL RXBYTE1
MOVF SER_RX,0
XORLW ’S’ ; test if S symbol
BTFSS STATUS, 2
GOTO MAIN

        CALL RXBYTE1
MOVF SER_RX,0
XORLW ’A’ ; test if A symbol
BTFSS STATUS, 2
GOTO MAIN

        CALL RXBYTE1
MOVF SER_RX,0
XORLW ’0’
BTFSS STATUS, 2
GOTO MAIN

CALL RXBYTE1
MOVF SER_RX,0
XORLW ’H’ ; test if P symbol
BTFSS STATUS, 2
GOTO JUMP
GOTO SETHIGH

JUMP MOVF SER_RX,0
XORLW ’L’ ; test if P symbol
BTFSS STATUS, 2
GOTO JUMP2
GOTO SETLOW

JUMP2 MOVF SER_RX,0
XORLW ’P’ ; test if P symbol
BTFSS STATUS, 2
GOTO MAIN

CALL READACC ; read ADXL Data if ’P’
CALL    TX_DATA         ; transmit data to PC

        GOTO    MAIN

SETHIGH BSF PORTB, TXD
GOTO MAIN

SETLOW BCF PORTB, TXD
GOTO MAIN

END
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#include <PICCoder.h>

/* Converted from acc.asm (by Chris Djiallis based on gps.asm by Chris Djiallis 
and MultiPIC.asm by Cliff Randell) */
/* Converted to acc.c by Tom Parker */

/*TITLE "acc.c − PIC interface for Accelerometer device to PC (filtered) comms"*
/

const int  TXD = 1;
const int  RXD1 = 0;
const int  RXD2 = 1;
const int  X_IN = 1;
const int  Y_IN = 0;
int  const MEMBAS= 0x008;
int  const BAUDIV = 2; /* Rtcc setting for 3.2us tick with 10MHz clock */
int  const BAUD = 61; /* 4800baud−208us 2400baud−416us 1200baud−833us 
*/

/* 65 ticks of 3.2us = 208us */
/* reduced to 61

 on test (instruction delay) */

int  BAUDSET; /* Element time */
int  BAUDHAF; /* Half element time */
int  BAUDSTR; /* (1 + 1/2) element time to drop */
int  const NUMBIT=8; /* Number of transmit serial data bits *
/

V_Node* SER_RX;
V_Node* SER_TX;
V_Node* BITCNT;

V_Node* T1_X;
V_Node* T1_Y;
V_Node* T2;
V_Node* COUNTER;

S_Node *BITIN(int  pin)
{

S_Node *ret = setVar(getTimer(),newConstant(BAUDSET));
ret = makeBlock(ret,whileExpr(buildBoolean(VtoE(getTimer()),BOOL_EQ,newC

onstant(0)),NULL));

/* Timer has zeroed, shift SER_RX, sample data and exit */

ret = makeBlock(ret,rotateVarRight(SER_RX)); /* Shift data to make wa
y for next bit */

ret = makeBlock(ret,ifExpr( buildBoolean(readPort(PORT_B,pin),BOOL_EQ,ne
wConstant(0)),

clearVariableBit(SER_RX,7),
setVariableBit(SER_RX,7)
));

return ret;
}

/******* */
/* TXLOW sets the transmit data RS232 line 1 low for a MARK */

S_Node* TXLOW()
{

return unsetPort(PORT_B,TXD);
}

/******* */
/* TXHI sets the transmit data RS232 line 1 high for a SPACE */

S_Node* TXHI()
{

return setPort(PORT_B,TXD);



}

S_Node* WAITEM()
{

return makeBlock(
setVar(getTimer(),newConstant(BAUDSET)),
whileExpr(buildBoolean(VtoE(getTimer()),BOOL_EQ,newConstant(0)),

NULL)
);

}

/******* */
/* XMIT sends the 8 bit (or less) byte in W reg to the transmit dat

a */
/* port as an async data byte with 1 start and 1 stop bit with the 

least */
/* significant bit first. */

S_Node* XMITC();

S_Node *XMIT(E_Node* tostore)
{

S_Node *ret = makeBlock(
setVar(SER_TX,tostore),
setVar(BITCNT,newConstant(NUMBIT+1))

);
ret = makeBlock(ret,TXLOW());
return makeBlock(ret,whileExpr(buildBoolean(VtoE(BITCNT),BOOL_EQ,newCons

tant(0)),XMITC())); 
}

S_Node* XMITC()
{

S_Node *doifNZ = makeBlock(
setVar(BITCNT,arithExpr(VtoE(BITCNT),ARITH_MINUS,newConstant(1))

),
ifExpr(buildBoolean(VtoE(BITCNT),BOOL_EQ,newConstant(0)),

makeBlock(
ifExpr(testVariableBit(SER_TX,0),TXLOW(),TXHI())

,
rotateVarRight(SER_TX)

),
TXHI()

)
);
return makeBlock(doifNZ,WAITEM());

}

/******* */
/* RXBYTE receives and dumps the start bit. Receives 8 bits into */
/* ’SER_RX’ with the most significant bit received first and then d

umps */
/* the stop bit. */

/* First, test for the LOW start bit at the beginning of the byte. 
*/

S_Node *RXBYTE1()
{

S_Node *ret = whileExpr(buildBoolean(readPort(PORT_B,RXD1),BOOL_EQ,newCo
nstant(0)),NULL); /* Test receive data, loop until data low*/

ret = makeBlock(ret,setVar(getTimer(),newConstant(BAUDHAF))); /* Load ha
lf element time and preset the timer */

ret = makeBlock(ret,whileExpr(buildBoolean(VtoE(getTimer()),BOOL_EQ,newC
onstant(0)),NULL)); /* Read the RTC divider and Loop until divider zeroes */

ret = makeBlock(ret,whileExpr(buildBoolean(readPort(PORT_B,RXD1),BOOL_EQ
,newConstant(0)),NULL)); /* Test receive data, loop until data low (true start b
it) */



/* Start edge seen (low level) − set timer for 1 elements which */
/* causes BITIN to go to first data bit. */

ret = makeBlock(ret,setVar(getTimer(),newConstant(BAUDSET))); /* Load on
e element time and preset the timer */

ret = makeBlock(ret,setVar(SER_RX,newConstant(1<<7))); /* Initialise ser
ial data register */

ret = makeBlock(ret,BITIN(RXD1)); /* Get a data bit */
ret = makeBlock(ret,whileExpr(noCarry(),BITIN(RXD1))); /* Loop until the

 ’carry’ bit appears */
 

/* Received character is in SERIAL, now dump the stop bit */

return makeBlock(ret,WAITEM());
}

/*−−−−−−−−−−−−− TX_DATA −−−−−−−−−−−−−−− */
/* */
/*    >> transmit accel to PC */
/* */
/*−−−−−−−−−−−−− TX_DATA −−−−−−−−−−−−−−− */

S_Node* TX_DATA()
{

S_Node *ret =       XMIT(newConstant(’$’));
ret = makeBlock(ret,XMIT(newConstant(’R’)));
ret = makeBlock(ret,XMIT(newConstant(’A’)));
ret = makeBlock(ret,XMIT(newConstant(’O’)));
ret = makeBlock(ret,XMIT(VtoE(T1_X)));
ret = makeBlock(ret,XMIT(VtoE(T1_Y)));
ret = makeBlock(ret,XMIT(VtoE(T2)));
ret = makeBlock(ret,XMIT(newConstant(’;’)));
return makeBlock(ret,XMIT(newConstant(’\n’)));

}

/*−−−−−−−−−−−−− READACC −−−−−−−−−−−−−−− */
/* */
/*    >> read acceleration */
/* */
/*−−−−−−−−−−−−− READACC −−−−−−−−−−−−−−− */

S_Node *READACC()
{

S_Node *ret = setVar(COUNTER,newConstant(0)); /* set counter to zero */
ret = makeBlock(ret,whileExpr(buildBoolean(readPort(PORT_A,X_IN),BOOL_EQ

,newConstant(0)),NULL)); /* wait for X_IN to be low (for synchronisation) */
ret = makeBlock(ret,whileExpr(buildBoolean(readPort(PORT_A,X_IN),BOOL_EQ

,newConstant(1)),NULL)); /* wait for first rising edge */

ret = makeBlock(ret,whileExpr(buildBoolean(readPort(PORT_A,X_IN),BOOL_EQ
,newConstant(1)),

set_execcycles(setVar(COUNTER,arithExpr(VtoE(COUNTER),AR
ITH_PLUS,newConstant(1))),4)

)); /* wait for first falling edge */
ret = makeBlock(ret,setVar(T1_X,VtoE(COUNTER))); /* T1_X = COUNTER */

ret = makeBlock(ret,setVar(COUNTER,newConstant(0)));
ret = makeBlock(ret,whileExpr(buildBoolean(readPort(PORT_A,Y_IN),BOOL_EQ

,newConstant(0)),NULL)); /* wait for X_IN to be low (for synchronisation) */
ret = makeBlock(ret,whileExpr(buildBoolean(readPort(PORT_A,Y_IN),BOOL_EQ

,newConstant(1)),NULL)); /* wait for first rising edge */

ret = makeBlock(ret,whileExpr(buildBoolean(readPort(PORT_A,Y_IN),BOOL_EQ
,newConstant(1)),

set_execcycles(setVar(COUNTER,arithExpr(VtoE(COUNTER),AR
ITH_PLUS,newConstant(1))),4)

)); /* wait for first falling edge */
ret = makeBlock(ret,setVar(T1_Y,VtoE(COUNTER))); /* T1_Y = COUNTER */

ret = makeBlock(ret,whileExpr(buildBoolean(readPort(PORT_A,Y_IN),BOOL_EQ



,newConstant(0)), /* wait for second rising edge */
set_execcycles(setVar(COUNTER,arithExpr(VtoE(COUNTER),AR

ITH_PLUS,newConstant(1))),4)
));

ret = makeBlock(ret,setVar(T2,VtoE(COUNTER))); /* T2 = COUNTER */

return ret;
}

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
/* This program is intended to provide an interface between */
/* an Accelerometer and a processor with a serial RS232 port. */
/* */
/* Requests from the processor are in the form of $SA... are responded to *
/
/* with data also in the form $RA*******. */
/* */
/* The format of the serial data is 4800 baud, 1 start, 1 stop and 8 */
/* data bits with no parity. */
/* */
/* For use with DS275 RS232 Serial interface chip, */
/* i.e uses normal polarity − not inverted. */
/* */
/* */

/* Baud rate and software uart constant definitions */

int  main()
{

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−− */

/* Variable Assignment */
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−− */

/*V_Node* FLAG = newVariable(NULL);*/ /* 8 general purpose flag bits h
eld here */

S_Node *_master;

SER_RX = newVariable( NULL); /* Serial shift register for dat
a rx */

SER_TX = newVariable( NULL); /* Serial shift register for data tx */
BITCNT = newVariable( NULL); /* Counter of bits received */

COUNTER = newVariable( NULL);
T1_X = newVariable( NULL);
T1_Y = newVariable( NULL);
T2 = newVariable( NULL);

BAUDSET=0x100−BAUD;
BAUDHAF=BAUDSET+BAUD/2;
BAUDSTR=0x100−BAUD−BAUD/2;

_master = TXHI();
_master = makeBlock(_master,setVar(getTimer(),newConstant(BAUDIV)));
_master = makeBlock(_master,setPort(PORT_B, TXD));
_master = makeBlock(_master,RXBYTE1());

_master = makeBlock(_master,
ifExpr(buildBoolean(VtoE(SER_RX),BOOL_EQ,newConstant(’ $’)),

makeBlock(
RXBYTE1(),
ifExpr(buildBoolean(VtoE(SER_RX),BOOL_EQ,newCons

tant(’ S’)),
makeBlock(

RXBYTE1(),
ifExpr(buildBoolean(VtoE(SER_RX)

,BOOL_EQ,newConstant(’ A’)),



makeBlock(
RXBYTE1(),
ifExpr(buildBool

ean(VtoE(SER_RX),BOOL_EQ,newConstant(’O’)),
makeBloc

k(

RXBYTE1(),

ifExpr(buildBoolean(VtoE(SER_RX),BOOL_EQ,newConstant(’H’)),

setPort(PORT_B,TXD),

ifExpr(buildBoolean(VtoE(SER_RX),BOOL_EQ,newConstant(’L’)),

unsetPort(PORT_B,TXD),

ifExpr(buildBoolean(VtoE(SER_RX),BOOL_EQ,newConstant(’P’)),

makeBlock(READACC(),TX_DATA()),

NULL)

)

)
),
NULL)

),
NULL)

),
NULL)

),
NULL)

);

outputcode(_master);
return 0;

}

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */


